44 research outputs found

    Potassium Dependent Regulation of Astrocyte Water Permeability Is Mediated by cAMP Signaling

    Get PDF
    Astrocytes express potassium and water channels to support dynamic regulation of potassium homeostasis. Potassium kinetics can be modulated by aquaporin-4 (AQP4), the essential water channel for astrocyte water permeability regulation. We investigated whether extracellular potassium ([K+]o) can regulate astrocyte water permeability and the mechanisms of such an effect. Studies were performed on rat primary astrocytes and a rat astrocyte cell line transfected with AQP4. We found that 10mM [K+]o caused an immediate, more than 40%, increase in astrocyte water permeability which was sustained in 5min. The water channel AQP4 was a target for this regulation. Potassium induced a significant increase in intracellular cAMP as measured with a FRET based method and with enzyme immunoassay. We found that protein kinase A (PKA) could phosphorylate AQP4 in vitro. Further elevation of [K+]o to 35mM induced a global intracellular calcium response and a transient water permeability increase that was abolished in 5min. When inwardly rectifying potassium (Kir)-channels were blocked, 10mM [K+]o also induced a calcium increase and the water permeability increase no longer persisted. In conclusion, we find that elevation of extracellular potassium regulates AQP4 and astrocyte water permeability via intracellular signaling involving cAMP. A prolonged increase of astrocyte water permeability is Kir-channel dependent and this response can be impeded by intracellular calcium signaling. Our results support the concept of coupling between AQP4 and potassium handling in astrocytes

    AAV-mediated photoreceptor transduction of the pig cone-enriched retina

    Get PDF
    Recent success in clinical trials supports the use of adeno-associated viral (AAV) vectors for gene therapy of retinal diseases caused by defects in the retinal pigment epithelium (RPE). In contrast, evidence of the efficacy of AAV-mediated gene transfer to retinal photoreceptors, the major site of inherited retinal diseases, is less robust. In addition, although AAV-mediated RPE transduction appears efficient, independently of the serotype used and species treated, AAV-mediated photoreceptor gene transfer has not been systematically investigated thus so far in large animal models, which also may allow identifying relevant species-specific differences in AAV-mediated retinal transduction. In the present study, we used the porcine retina, which has a high cone/rod ratio. This feature allows to properly evaluate both cone and rod photoreceptors transduction and compare the transduction characteristics of AAV2/5 and 2/8, the two most efficient AAV vector serotypes for photoreceptor targeting. Here we show that AAV2/5 and 2/8 transduces both RPE and photoreceptors. AAV2/8 infects and transduces photoreceptor more efficiently than AAV2/5, similarly to what we have observed in the murine retina. The use of the photoreceptor-specific rhodopsin promoter restricts transgene expression to porcine rods and cones, and results in photoreceptor transduction levels similar to those obtained with the ubiquitous promoters tested. Finally, immunological, toxicological and biodistribution studies support the safety of AAV subretinal administration to the large porcine retina. The data presented here on AAV-mediated transduction of the cone-enriched porcine retina may affect the development of gene-based therapies for rare and common severe photoreceptor diseases

    Astrocytic Mechanisms Explaining Neural-Activity-Induced Shrinkage of Extraneuronal Space

    Get PDF
    Neuronal stimulation causes ∼30% shrinkage of the extracellular space (ECS) between neurons and surrounding astrocytes in grey and white matter under experimental conditions. Despite its possible implications for a proper understanding of basic aspects of potassium clearance and astrocyte function, the phenomenon remains unexplained. Here we present a dynamic model that accounts for current experimental data related to the shrinkage phenomenon in wild-type as well as in gene knockout individuals. We find that neuronal release of potassium and uptake of sodium during stimulation, astrocyte uptake of potassium, sodium, and chloride in passive channels, action of the Na/K/ATPase pump, and osmotically driven transport of water through the astrocyte membrane together seem sufficient for generating ECS shrinkage as such. However, when taking into account ECS and astrocyte ion concentrations observed in connection with neuronal stimulation, the actions of the Na+/K+/Cl− (NKCC1) and the Na+/HCO3− (NBC) cotransporters appear to be critical determinants for achieving observed quantitative levels of ECS shrinkage. Considering the current state of knowledge, the model framework appears sufficiently detailed and constrained to guide future key experiments and pave the way for more comprehensive astroglia–neuron interaction models for normal as well as pathophysiological situations

    Aquaporin water channels in the nervous system.

    Get PDF
    The aquaporins (AQPs) are plasma membrane water-transporting proteins. AQP4 is the principal member of this protein family in the CNS, where it is expressed in astrocytes and is involved in water movement, cell migration and neuroexcitation. AQP1 is expressed in the choroid plexus, where it facilitates cerebrospinal fluid secretion, and in dorsal root ganglion neurons, where it tunes pain perception. The AQPs are potential drug targets for several neurological conditions. Astrocytoma cells strongly express AQP4, which may facilitate their infiltration into the brain, and the neuroinflammatory disease neuromyelitis optica is caused by AQP4-specific autoantibodies that produce complement-mediated astrocytic damage

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases

    Supplementary Material for: A Cost-Effective Mutation Screening Strategy for Inherited Retinal Dystrophies

    No full text
    <br><strong><em>Objective:</em></strong> We developed a simple, time- and cost-effective Excel-based genetic screening strategy for the diagnosis of inherited retinal dystrophies (IRD). <b><i>Design:</i></b> 76 patients diagnosed with IRD and 112 nonaffected family members, from 55 unrelated families, were included. DNA samples were analyzed using Axiom Exome Genotyping Array Plates (Affymetrix) that contain over 300,000 genetic variants, including more than 5,000 variants present in 181 genes involved in IRD. We used a simple Excel-based data mining strategy in order to screen IRD variants likely involved in the development of IRD. <b><i>Results:</i></b> A total of 5 relevant genetic variants were found in 5 IRD genes. Four variants were reported either as pathogenic or with a prediction of probably damaging, and 1 variant was reported to affect a regulatory region. These variants were present in 14 patients and in 11 carriers, in 10 unrelated families. <b><i>Conclusion:</i></b> Using our Excel-based data screening strategy, we were able to assign likely genetic diagnoses in a fast and cost-effective manner to over 18% of patients analyzed, with a comparable ratio of genetic findings to that reported with retina-specific arrays for about 1/5 of the cost. Our approach proved efficient in reducing costs and time for IRD diagnosis as a first tier genetic screening method
    corecore